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Abstract— Designing future capacity mixes with adequate 

flexibility requires capturing operating constraints through an 
embedded unit commitment approximation. Despite significant 
recent improvements, such simulations still require significant 
computation times. Here we propose a method, based on 
clustering units, for approximate unit commitment with dramatic 
improvements in solution time. This method speeds computation 
by aggregating similar but non-identical units. This replaces 
large numbers of binary commitment variables with fewer 
integers while still capturing individual unit decisions and 
constraints. We demonstrate the trade-off between accuracy and 
run-time for different levels of aggregation. A numeric example 
using an ERCOT-based 205-unit system illustrates that careful 
aggregation introduces errors of 0.05-0.9% across several metrics 
while providing several orders of magnitude faster solution times 
(400x) compared to traditional binary formulations. Further 
aggregation increases errors slightly (~2x) with further speedup 
(2000x). We also compare other simplifications that can provide 
an additional order of magnitude speed-up for some problems.  

 
Index Terms—Integer programming, Power generation 

scheduling, Power system modeling, Unit commitment, 
Flexibility, Capacity Expansion. 

NOMENCLATURE 

A. Indices 
 
g, G  Generating unit, set of units 

𝑔, 𝐺  Generation cluster, set of clusters 

t, τ , T       Time period 

ρ         Reserve category {1,2,3} 

  Indicates clustered variable/parameter 

 
B. Variables 
 
𝐶!"!#$  Total system cost [$] 

𝐶!,!!"#          Variable costs [$] 

𝐶!,!!"#$"      Startup costs [$] 

𝑃!,!      Power output [MWh] 
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𝑈!,!,  𝑈!,!    unit commitment state: 0/1, clustered integer 

𝑆!,! , 𝑆!,!     startup indicator: individual, clustered 

𝐷!,! , 𝐷!,!      shutdown indicator: individual, clustered 

𝑅!,!
!,!"      Primary (regulation) up reserves 

𝑅!,!
!,!"#$  Primary (regulation) down reserves 

𝑅!,!
!,!"   Secondary (load follow) up reserves 

𝑅!,!
!,!"#$  Secondary (load follow) down reserves 

𝑅!,!!    Tertiary reserves (quick start) 

 
C. Parameters 
 
𝑐!
!"#$      Fuel costs [$/mmbtu] 

𝑐!!"#$&!      Variable O&M costs [$/mmbtu] 

𝐹!(𝑃!)      Heatrate (Fuel use) function [mmbtu/MWh] 

𝑓!!"#$"      Fuel usage at startup [mmbtu/start] 

𝑙!       Load [MWh] 

𝑝!!"#      Minimum power output [MWh] 

𝑝!!"#      Maximum power output [MWh] 

∆𝑝!!"#$     Maximum down-ramp rate [MWh/hr] 

∆𝑝!
!"      Maximum up-ramp rate [MWh/hr] 

𝑟!,!"     Primary up reserve load fraction 

𝑟!,!"#$     Primary down reserve load fraction  

𝑟!,!"     Secondary up reserve load fraction  

𝑟!,!"#$     Secondary down reserve load fraction 

𝑟!"#$%&     Contingency reserve load fraction  

𝑟!"#$%&"    Tertiary reserve load fraction  

𝑥!"#$!%     Fraction of secondary reserves from offline 

𝑎!
!,!"#      Reserve capability by direction [per unit] 

𝑎!
!"#$%&'()'      0/1 quick start ability  

𝑚!
!"/!"#$      Minimum up- or down-time [hrs]  

Heterogeneous Unit Clustering for Efficient 
Operational Flexibility Modeling 
Bryan S. Palmintier, Member, IEEE, and Mort D. Webster, Member, IEEE 



   2 

I.  INTRODUCTION 
rowth in variable renewables and other advanced power 
system technologies has prompted a need for researchers 
to capture operational flexibility in a range of models.  

Operational flexibility requires a balance between 1) 
requirements due to uncertainty (e.g., forecast errors and 
outages) and fluctuations (e.g., demand and wind ramps) and 
2) limitations, typically from thermal generator technical 
constraints (e.g., minimum output levels, startup/shutdown 
limits, maximum ramping, etc.). In flexibility studies, 
variability and constraints are typically captured using unit 
commitment (UC) models [1-22].  

Since some of the early pioneering work in UC models [1-
5], there have been significant contributions in reformulating 
unit commitment models to appropriately represent variable 
generation and its impacts on reserve requirements and 
operations within an existing capacity mix [6-17].  Much of 
this work has been to develop improved algorithms for 
stochastic unit commitment, inclusion of transmission and 
security constraints, and the use of these models to develop 
optimal reserve allocation rules and to economically value the 
additional reserve requirements from renewables.  In addition, 
there have been initial attempts to consider long-term 
flexibility needs within capacity planning models [18-21].  

However, the unit commitment (UC) problem is by itself 
computationally intensive to solve because of the combination 
of the large number of discrete (binary) on/off decisions – one 
for each generator for each time period – and the number and 
complexity of the technical constraints.  To include the full 
UC problem within a long-term planning model would make 
the solution of these models infeasible because the UC 
subproblem has to be solved for many alternative capacity 
mixes considered, often over a long timeframe (e.g., one year). 
What is needed within capacity expansion models is a 
simplified approximation of the UC problem that captures its 
large-scale features. The importance of representing UC 
within generation planning has been well demonstrated by 
Shortt, et al. [22]. 

This paper explores a range of approximations to the UC 
problem. Because our goal is to study future potential systems 
that do not yet exist, we neglect many of the details required 
for near-term operations models of current systems. In 
particular, we assume a well-developed transmission system 
and only consider security constraints through generation 
reserves. Moreover, the nuances of generator-specific 
characteristics, may not be necessary. Indeed, for any units not 
yet built only generalized data may be available. Relaxing the 
need for unit-specific data enables the aggregation or 
clustering of similar generation units. This transforms the 
large number of binary commitment variables to far fewer 
integer variables, and thereby drastically reduces the problem 
size and corresponding run times [18], [23], [24]. 

The concept of aggregating identical units is not new. As 
early as 1966, pioneering studies in computer based unit 
commitment, grouped identical generators together to 
illustrate simple solution techniques with limited computer 
hardware [25]. More recently, examples of combining 
identical units has also appeared in the literature. For example, 
Gollmer, et al. [23] also use grouped integer commitment for 
identical thermal plants and Garcia-Gonzalez, et al. [26] use a 

grouped integer on/off state when modeling banks of identical 
hydro turbines for optimal combined bidding with wind. 
Likely other implementations using such homogeneous 
clustering remain unpublished, since the computational 
advantages of binary aggregation to integers is well 
recognized in the operations research community [27]. For 
example in his dissertation, Cerisola describes homogeneous 
aggregation into “generalized” units with integer commitment 
variables [28], yet this formulation is not described in related 
journal articles [29]. When clustering identical, co-located 
units, clustering can provide identical solutions in faster times. 

The concept of heterogeneous clustering extends this 
aggregation such that similar, but not identical, units are 
clustered together and assigned an integer commitment state. 
Conceptually, this approach is similar to that of Sen and 
Kothari [30], who also group units. However, their treatment 
assumes a binary commitment state for the entire group: all on 
or all off. This is computationally helpful, but is much less 
flexible than an integer formulation that allows some of the 
generators within a group to run while others are off. The all 
or none approach also prevents properly computing startup 
costs, minimum output levels, and reserve capability.  

Recent work on heterogeneous clustering has demonstrated 
efficient unit-commitment-based computations over long time 
horizons (e.g. full year as 8760 sequential hours) as part of 
price estimation [24] and planning studies [18]. However, in 
both efforts, heterogeneous clusters are simply used to make 
the study tractable, without considering different clustering 
approaches or comparing the results to a full binary 
formulation.  

A key contribution of this paper is to explore the trade-offs 
among accuracy, run-time and level of aggregation used in 
heterogeneous clustering. To do so, we introduce a set of 
performance metrics applicable to a wide range of decision 
objectives. We also compare the performance of other 
simplifying long-term UC assumptions with and without 
clustering.  

In addition, this paper presents a streamlined 
implementation for clustered minimum up and down time, 
which uses only one integer variable per cluster. As described 
in [24] and [28], these dynamic, inter-period constraints 
require careful consideration since within the same cluster, 
some units may startup or shutdown while others continue to 
run. In the past, these constraints have been converted back to 
binary [28], not described fully [23], or are not relevant 
because non-thermal units are aggregated [26]. Langrene et al. 
describe heterogeneous clustered dynamic constraints in 
detail, but their minimum up/down formulation requires 
multiple integer variables per cluster per time period [24]. 
These separate integers explicitly represent startup/shutdown 
generator states: running but stoppable, must keep running, 
stopped but able to start, and must stay stopped. As described 
below, our formulation uses sums of existing continuous 
startup and shutdown variables to maintain only a single 
integer unit commitment variable per cluster, thereby further 
reducing the problem size. 

In Section II, we formulate a standard binary UC model 
that we use to compare against our clustered formulation.  We 
present the clustered formulation of the UC model in Section 
III.  Section IV describes alternative speedup strategies used in 
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the literature to which we compare our approach.  The 
experimental setup and error metrics are defined in Section V.  
Section VI describes the 205-generator unit test system and 
Section VII presents the results. Section VIII provides a 
concluding discussion. 

II.  TRADITIONAL UNIT COMMITMENT 

A.  Core model 
The generic unit commitment problem finds the minimum 

cost combination of generator commitment and power output 
to meet demand over time. Here we linearize the standard 
basic formulation [31], [32], for a thermal-only system. The 
resulting optimization problem is a large mixed-integer linear 
program (MILP) that can then be solved by powerful 
commercial solvers as is done by a growing number of power 
system operators [33]. For clarity, we use uppercase for 
variables, bold upper case for sets, and lowercase for 
parameters and set elements. 
    1)  The Objective Function minimizes total operations costs: 

𝐶!"!#$ = min 𝐶!,!!"# + 𝐶!,!!"#$"

!∈𝑻!∈𝑮

 (1) 

computed as the sum of variable costs, 𝐶!,!!"#, and startup costs, 
𝐶!,!!"#$", for all units, 𝑔, and time periods, 𝑡.  
    2)  The Variable Costs, 𝐶!,!!"# include fuel usage as a 
function,  𝐹!, of the instantaneous power output, 𝑃!,!, times fuel 
costs, 𝑐!

!"#$; and variable operations and maintenance (O&M) 
costs, 𝑐!!"#$&!: 

𝐶!,!!"# = 𝐹!(𝑃!,!)𝑐!
!"#$ + 𝑃!,!𝑐!!"#$&!  

with      𝑃!,! ≥ 0, 
(2) 

    3)  The Startup Costs, 𝐶!,!!"#$", assume a constant fuel use per 
startup, 𝑓!!"#$": 

𝐶!,!!"#$" = 𝑆!,!𝑓!!"#$"𝑐!
!"#$ (3) 

Startup events, 𝑆!,!, are computed using the state equation: 
𝑈!,! = 𝑈!,!!! + 𝑆!,! − 𝐷!,! (4) 

with            𝑈!,! ∈ {0,1} (5a) 
Here 𝑈!,! represents the commitment (on/off) state of each 
unit, 𝑆!,! represents startup events, and 𝐷!,!  represents unit 
shut down1.  

We note that (3) deviates from startup formulations that 
distinguish warm and cold startup costs, e.g. [31]. This 
constant startup cost simplification is commonly used for this 
class of long-term unit commitment problem [17], [20], [35]. 
    4)  The System Balance Constraint ensures that the sum of 
instantaneous power, 𝑃!,!, equals total load, 𝑙!, at all times: 

𝑃!,!
!∈𝑮

=      𝑙!                                        ∀𝑡 ∈ 𝑻 (6) 

                                                             
1 In this formulation, 𝑆!,! and 𝐷!,! are continuous variables that will be 

forced to take on integer variables by (4). Recent work by Ostrowski, et al. 
[34] has shown improved performance with modern MILP solvers by 
constraining these variables as integers. The results reported here were run 
before [34] was published. Limited testing, has confirmed that these 
performance improvements hold with clustering, but show the same relative 
performance as presented in detail here. 

    5)  Unit Minimum and Maximum Output Constraints use the 
binary commitment variable to imply that each generating unit 
is either off and outputting zero power (𝑈!,! = 0), or on and 
running within its operating limits, 𝑝!!"# and 𝑝!!"# (𝑈!,! = 1): 

𝑈!,!𝑝!!"# ≤ 𝑃!,! ≤ 𝑈!,!𝑝!!"#   (7a) 

B.  Additional Constraints 
A more realistic model includes additional cost components 

and generator and system reliability imposed technical 
constraints [32]. We focus on the most common extensions: 
    1)  Ramping Limits capture limitations on how fast thermal 
units can adjust their output power: 

𝑃!,!!! − 𝑃!,! ≤ U!,!𝛥𝑝!!"#$%&'

+max 𝑝!!"#,𝛥𝑝!!"#$%&' 𝐷!,! 
(8a) 

𝑃!,! − 𝑃!,!!! ≤ U!,!𝛥𝑝!
!"#$%

+max 𝑝!!"#,𝛥𝑝!
!"#$% 𝑆!,! 

(9a) 

where the ∆p’s are the ramp limits up or down.  
    2)  Minimum Up and Down Times are modeled using the 
most computationally efficient formulation from [36], [37], 
with 𝑚!

!" and 𝑚!
!"#$ for minimum up and down times: 

𝑈!,! ≥ 𝑆!,!

!

!!!!!!
!"

   (10) 

1 − 𝑈!,! ≥ 𝐷!,!

!

!!!!!!
!"#$

   (11a) 

    3)  Operating Reserves: Because power generated on the 
grid must match demand instantaneously, a number of 
operating reserves are maintained by allowing room between 
generator output levels and corresponding limits to provide 
on-line capacity able to quickly increase (or decrease) and 
compensate for generation or transmission outages, forecast 
errors, etc.: 
          a)  Primary, or regulation, reserves, operate at the few 
second timescale to compensate for rapid stochastic changes: 

𝑅!,!
!,!"

!∈𝑮

≥    𝑟!,!"𝑙! (12) 

𝑅!,!
!,!"#$

!∈𝑮

≥    𝑟!,!"#$𝑙! (13) 

where 𝑅!,!
!,!" and 𝑅!,!

!,!"#$are the quantities of primary reserves 
supplied by unit g in time period t. The totals of which must 
exceed the exogenously determined system-level frequency 
reserve requirements, 𝑟!,!" and 𝑟!,!"#$. 
          b)  Secondary reserves operate on the few minute 
timescale for both contingencies (spinning reserves) and load 
following. We allow a fraction of the reserve up supply, 
𝑥!"#$!%, to be supplied by non-synchronized resources such as 
offline quick starting units or demand response.: 

𝑅!,!
!,!"

!∈𝑮

≥ 𝑟!,!"𝑙! + 𝑟!"#$%& 1 − 𝑥!"#$!%  (14) 

𝑅!,!
!,!"#$

!∈𝑮

≥    𝑟!,!"#$𝑙! (15) 
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The 𝑅!,!’s are the quantity of on-line secondary reserves 
supplied by each unit. 𝑟!,!" and 𝑟!,!"#$ are the system load 
following requirements, a function of load/wind forecast error. 
𝑟!"#$%& is the additional reserve required for contingencies, 
typically set to the largest unit or transmission tie capacity. 
          c)  Tertiary or quick start reserves are off-line but ready 
to run units that can be brought on-line quickly when needed:  

𝑅!,!! + 𝑅!,!
!,!"

!∈𝑮

≥    𝑟!,!"𝑙! + 𝑟!"#$%& + 𝑟!"#$%&" (16) 

The left-hand side includes both tertiary and secondary up 
reserves both to capture the fraction of the secondary reserve 
allowed by (15) from off-line units, and to enable tertiary 
reserves to be met by on-line units when appropriate. 
          d)  Unit reserve capabilities are dictated by the units 
ability to provide each type of reserve, 𝑎!

!: 

𝑅!,!
!,!"# ≤ 𝑎!

!,!"#𝑝!!"#        ∀𝜌 ∈ 1,2 , 𝑑𝑖𝑟 ∈ {𝑢𝑝, 𝑑𝑜𝑤𝑛} (17a) 
For tertiary reserves, quick start capable units can only be 

drawn from the pool of non-active units: 
𝑅!,!! ≤ (1 − 𝑈!,!)𝑎!

!"#$%&'()'𝑝!!"#   (18a) 

where 𝑎!
!"#$%&'()' represents the fraction of the unit capacity, 

𝑝!!"#, that can be deployed fast enough. 
          e)  Updated unit output constraints capture the need for 
a unit to run below maximum for upward and above minimum 
for downward reserves. This replaces (7a) with the pair: 

𝑃!,! ≥ 𝑈!,!𝑝!!"# + 𝑅!,!
!,!"#$ + 𝑅!,!

!,!"#$  
𝑈!,!𝑝!!"# ≥ 𝑃!,! + 𝑅!,!

!,!" + 𝑅!,!
!,!" 

(7b) 

III.  CLUSTERED UNIT COMMITMENT 

A.  The Concept of Clustering 
As described in the introduction, for problems with 

simplified or ignored transmission constraints, it is possible to 
combine similar generating units into clusters. As seen in Fig. 
1, this replaces the large set of binary commitment decisions, 
one for each unit, with a smaller set of integer commitment 
states, one for each cluster. All of the other variables – such as 
power output level, reserves contribution, etc. – and 
constraints are then aggregated for the entire cluster. Within 
the cluster, however, the integer commitment variable still 
captures individual unit level relations. 

Computationally, the integer variables provide structure 
that both reduces the dimensionality of and guides the search 
through the combinatorial commitment state space by 
eliminating identical or very similar permutations of binary 
commitment decisions. The number of possible discrete 
combinations of commitment variables with the traditional 
formulation scales exponentially as 2N with the number of 
units N, while clustering scales as the product of the cluster 
sizes: ∏𝑛!. For example, a system with 100 units clustered 
into three groups of sizes {10, 70, 20} would reduce the 
number of discrete combinations in each time period from 
~10!" to ~10!.2 In addition, clustering reduces the number of 

                                                             
2 Modern MILP solvers use sophisticated branch-and-cut algorithms to 

explore only a tiny fraction of this combinatorial space. Still, the speedup with 
reduced dimensionality can be dramatic. 

continuous equations and variables since all relations now 
apply over the smaller number of clusters rather than the full 
set of individual units. 

 

 
(a) Traditional 

 
(b)  Clustered 

Fig. 1.  Conceptual comparison between traditional and clustered unit 
commitment for a single type of unit in a single time period. In the traditional 
formulation (a), each unit has a separate binary commitment variable, 𝑈!,!. 
With clustering (b), the entire cluster of 𝑛! units has only a single integer 
commitment variable, 𝑈!,! .  

B.  Clustering Formulation 
Mathematically, little of the traditional formulation changes 

with clustering. The key exceptions are replacing the 
individual unit index, 𝑔, with the cluster identifier, 𝑔, and 
using a corresponding integer commitment variable, 𝑈!: 

𝑈! ∈ {0,1,… , 𝑛!} (5b) 

As before, the startup and shutdown variables, now 𝑆! 
and 𝐷!, continue to take continuous values, and are 
constrained by (4) and (5a) to take only positive integer 
values. The combination of minimum up/down time 
constraints and non-zero startup costs discourages 
simultaneous startup and shutdown within a cluster. 

 

    1)  Relations With No Change Needed. Beyond this 
substitution no further changes are required for the objective 
(1), variable costs (2), startup costs (3), commitment state (4), 
system balance (6), unit output constraints (7b), minimum up 
time (10), and system reserve requirements (12) – (16).  
    2)  Ramping Limits require the most extensive changes 
since hour-to-hour output for the entire cluster must account 
for units that start up, 𝑆!,!, and shut down, 𝐷!,!. The ramp rates 
for on-line generators also scale by the number of plants 
actually on-line, Û!,!. These modify (8a) & (9a) to:  

            𝑃!,!!! − 𝑃!,! ≤ 𝑈!,! − 𝑆!,! 𝛥𝑝!!"#$%&' − 𝑝!!"#𝑆!,!  
+max  (𝑝!!"#,𝛥𝑝!!"#$%&')𝐷!,! 

(8b) 

𝑃!,! − 𝑃!,!!! ≤ (𝑈!,! − 𝑆!,!)𝛥𝑝!
!"#$% − 𝑝!!"#𝐷!,! 

+max  (𝑝!!"#,𝛥𝑝!
!"#$%)𝑆!,! 

(9b) 

In these relations, the first term on the right includes the core 
units that run in both time periods, the second corrects for 
startup/shutdowns to prevent artificial inflation of the ramping 
limits for the core units, and the third captures the allowable 
extra change in cluster production due to shutdown/startup. 
    3)  Minimum Up and Down Time. Interestingly enough, the 
most efficient  formulation for up and down time described in 

...On
Off

Unĝ,tU1,t U2,t U3,t

0

Plants on-line, Ûĝ,t

nĝ
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[36], [37] adapts to clustering with minimal changes. The 
formulation is based on the sum of starts or stops during the 
minimum up or down period which readily adapts to integer, 
rather than binary, commitment states. The only change 
required calculates the number of units currently off as the 
difference between 𝑛! (as opposed to one) and the current 
commitment state, 𝑈!,!: 

𝑛! − 𝑈!,! ≥ 𝐷!,!

!

!!!!!!
!"#$%&#

   (11b) 

    4)  Reserve capabilities change similarly to: 

𝑅!,!
!,!"# ≤ 𝑈!,!𝑎!

!,!"#𝑝!!"#    
∀𝑑𝑖𝑟 ∈ {𝑢𝑝, 𝑑𝑜𝑤𝑛},

𝜌 ∈ 1,2  (17b) 

𝑅!,!
!"#!$%#& ≤ (𝑛! − 𝑈!,!)𝑎!

!"#$%&'()'𝑝!!"#   (18b) 

C.  Clustering Methodology 
With the heterogeneity of generation units in real systems, 

the exact basis for clustering is a decision with important 
tradeoffs. Here we compare the results from four different 
approaches to aggregation: 
    1)  Separate units – no clustering. This is the traditional 
formulation with binary commitment decisions for each unit. 
    2)  Full clustering by unit type only – In this case all units 
with the same combination of fuel type and prime mover (e.g., 
coal steam, open cycle gas turbine, natural gas combined 
cycle) are combined into clusters.  
    3)  Clustering by type and additional characteristics. This 
clustering approach sub-divides full clusters using an 
additional characteristic. For example, in this study we 
separately compare sub-dividing by size, age, or efficiency 
(heat rate). Cluster membership can be determined manually 
(as was done here) to provide roughly equal distributions of 
units between sub-clusters, or by using a formal clustering 
algorithm, such as k-means [38]. 
    4)  Clustering by plant. This approach clusters all units of 
the same type at the facility or plant level. Often, but not 
always, such units are identical. 

For all clustering approaches, the representative unit for 
each cluster is assumed to have a size (nameplate capacity) 
equal to the average of cluster members. Technical 
characteristics such as heatrate, ramp rates, minimum output, 
etc., are taken as the size-weighted average. This 
representative plant is effectively duplicated such that the 
number of units in the cluster, 𝑛!, matches the original 
number of individual units. 

D.  Key Assumptions 
In general, clustering assumes homogeneity of units within 

clusters. When clusters consist of identical units with constant 
incremental heat rates—i.e., only a single piecewise linear 
segment—the clustered solution exactly matches the 
traditional solution. For similar, but not identical, generators in 
the same cluster, they are assumed to have uniform technical 
characteristics such as minimum and maximum output levels, 
ramp rates, etc.  

IV.  OTHER SPEEDUP STRATEGIES 
In addition to clustering, we explore other strategies for 

speeding up long-term unit commitment computations. We 
focus here on problem-specific simplifications to long-term 
unit commitment that can accelerate the optimization. These 
include: 

• Constant incremental heat rate with offset: replace 
piecewise fuel-use with a single linear segment [23]; 

• Relaxed integer constraints for units with low min 
outputs: use relaxed commitment states for small units 
or units with small minimum output levels [22], [39]; 

• Combined reserves: aggregate reserve classes into three 
– off-line (tertiary), flexibility up, and flexibility down, 
similar to [40]; and  

• Limited start-ups per time: replace minimum 
up/downtime with constraint on total startups per unit. 

Other heuristics used in the literature include generic MILP 
solution tuning heuristics such as ε-optimal or “cheat”, 
perturbing key parameters for identical units to introduce 
small artificial differences, or imposing a merit order.  We 
have elsewhere [34] compared these techniques to clustering 
for a smaller system (IEEE Reliability Test System 1996), and 
found that clustering provides a two to three order of 
magnitude further reduction in solution time.  The example 
system presented below does not have identical units, so we 
do not address the MILP heuristics further here. 

V.  EXPERIMENTAL SETUP 

A.  Overview 
We solve the unit commitment problem for an example 

power system to compare the computation time and results of 
clustering versus a traditional, binary formulation. Further 
comparisons are made for both formulations in conjunction 
with speedup strategies described in Section IV. 

B.  Metrics of comparison 
To provide results relevant to a range of applications, we 

compute multiple comparison metrics. In all cases, we 
compare experimental runs to the full traditional binary unit 
commitment formulation, indicated with subscript “baseline”: 
    1)  Total Cost is the objective function value for the 
optimization and includes all operations costs. For 
comparison, we report the percent difference computed as: 

𝛥𝐶!"!#$ = (𝐶!"!#$ − 𝐶!"#$%&'$!"!#$ )/𝐶!"#$%&'$!"!#$  (19) 
    2)  CO2e Emissions are computed system-wide based on fuel 
usage for both operations and startup. A scalar percent 
difference is computed in the same manner as total cost. 
    3)  Energy Mix is based on total annual production by 
generator class divided in the same way as for clustering. The 
energy mix for each class is computed by summing the 
product of power output and duration for all time periods and 
dividing by the total system energy production: 

𝐸!
!"#$%&'( = 𝑃!,!

!∈𝑻

∙ 1ℎ𝑟 𝐷!
!∈𝑻

∙ 1ℎ𝑟  (20) 

The mean absolute difference of this vector gives: 
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𝛥𝐸!"# = Mean
!∈𝑮

𝐸!
!"#$%&'( − 𝐸!,!"#$%&'$

!"#$%&'(  (21) 

    4)  Commitment Plan differences are first computed as an 
array of differences with one element for each time period for 
each group of units aggregated to the cluster level. Two scalar 
comparisons are then made: a) The total count of differences 
between plans, computed as the number of non-zero elements 
in this array and b) the normalized mean absolute difference 
where commitment difference values for each time are 
normalized based on the total number of units committed for 
that time period in the baseline: 

𝛥𝑈 = Mean
!∈𝑻,!∈𝑮

𝑈!,! − 𝑈!,! !"#$%&'$
𝑈!,! !"#$%&'$!∈𝑮

    (22) 

    5)  Hourly Power Output differences are computed 
identically to commitment, except that for the count of 
differences, power levels are first rounded to the nearest 
0.5MW. 
    6)  Computation Time is reported as total solver (CPLEX) 
run time and excludes GAMS setup and output processing. 

C.  Implementation 
All runs share a common model written in GAMS [41] that 

uses pre-compile flags for different data, model 
simplifications and solver configurations. The resulting 
problems were then solved using the state-of-the-art CPLEX 
12.2 mixed-integer solver [42]. The solver was instructed to 
conserve memory when possible (memoryemphasis=1) to 
prevent out-of-memory errors for larger problems. The linear 
programming (LP) tolerance (epopt) was tightened to 1e-9 to 
ensure that the final LP solve matches the MILP branch-and-
cut solution. The solver time limit (reslim) was set to 10 hours. 

All model runs were conducted as a single thread running 
on a single 64-bit core (Intel Nehalem) at 2.67GHz clock 
speed. Up to 6 runs were run in parallel as sub-tasks of 
exclusive jobs on identical 8-core machines (2+ cores idle) 
with 24GB of shared RAM. Although run on a high 
performance cluster, the resulting resources allocated to each 
run are roughly equivalent to a modern personal computer.  

VI.  TEST SYSTEM: ERCOT 

A.  System Description 
To test the impact of clustering on a system of realistic 

size, we modeled the entire Electric Reliability Council of 
Texas (ERCOT) balancing area using hourly historic demand 
and wind data from 2007. This system includes the entire 
Texas Interconnect, which covers the majority of the state of 
Texas and has negligible power exchange with other systems. 
ERCOT had a 2007 peak load of 62GW [43] supplied by a 
total of 92.5GW of generation capacity from 672 units [44]. 

To simplify the problem, we ignored the non-dispatchable 
combined heat and power facilities (15GW in 204 units), 
hydro (an additional 0.5GW in 41 units), units with 
uncommon fuel types (an additional 0.1GW in 72 units), and 
units with less than 50MW nameplate capacity (1GW in 56 
units). In addition, we model combined cycle facilities as 36 
groups instead of 115 individual combustion and steam 
turbines. This resulted in a total of 205 units in our model 

system. We also ignore wind expansion during the year and 
assume a fixed wind capacity equal to the final 2007 capacity 
of 3.7GW. Hourly wind production was taken as this capacity 
times the actual percent production based on the installed 
capacity in each time period. Historic hourly wind production 
and demand data from 2007 was obtained from ERCOT [43].  

The week of Saturday Mar 17, 2007 was used for 1-week 
(168hr) analysis. This week contains both the peak wind and 
minimum demand. Thirteen week data include this peak wind 
week plus one week for each month. 

Plant-level heat rate and unit nameplate (maximum) 
capacity data was taken from eGrid 2010 v1.1, which contains 
2007 emission and plant data. Additional generator technical 
parameters were taken from the Sixth Northwest Power Plan 
appendix I [45] for corresponding plant types. Fuel costs were 
based on EIA 2007 data for south central west electric power 
sector use [46]. Reserve requirements were taken as 1% of 
load for regulation up and down, 1350MW for spinning 
reserves, and 2% of load for load following up and down. As a 
simple proxy for additional reserves required for wind 
uncertainty, load following requirements were increased as a 
function of both installed capacity and wind production using 
the factors in [40]. Up to 50% of the spinning reserve and load 
following up requirements can be met by quick start open 
cycle natural gas units. 

Complete generator data tables are provided in [47]. Hourly 
demand and wind profile data is available by request from 
ERCOT. Based on the results in [47], we used no cheat with a 
0.1% MIP gap for all runs. 

B.  Clustering Approach 
We compared the four clustering approaches described in 

Section III-B. The resulting number of clusters and example 
problem sizes are included in Table I. 

 
TABLE I: 

SIZE AND TIMES FOR 1-WEEK (168 HR) ERCOT CASE. 

 

VII.  RESULTS 

A.  Unit Commitment simplifications.  
As seen in Table II, each of the unit commitment 

simplifications provides some performance improvement. 
With separate units, combined reserves and constraining the 
number of startups, rather than using the minimum up and 
down time, provided the most significant speed-up of around 
10 times faster calculation. But, none of the simplifications 
were as effective as clustering alone, which was 200 times 
faster than any other simplification. In all cases, clustering 
further reduced computation time by a factor of between 350 
to more than 2000. 

time
aggregation clusters equations variables discretes non2zeros (sec)
None 205 446,394- 349,960- 34,272-- 2,068,949- 4517.2
By-Plant 90 197,922- 151,048- 14,952-- 943,685---- 435.3
Type-&-Age 17 37,650--- 27,400--- 2,688---- 186,173---- 8.0
Type-&-Size 17 37,650--- 27,400--- 2,688---- 186,173---- 10.2
Type-&-Eff. 17 37,650--- 27,400--- 2,688---- 186,173---- 11.9
Type-only 7 14,802--- 10,264--- 1,008---- 74,957------- 2.2

Problem7size7(Before7CPLEX7pre2solve)
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TABLE II: RUNTIME COMPARISON FOR UNIT COMMITMENT 
SIMPLIFICATIONS (1-WEEK) 

 
 
As seen in Fig 2, the errors for the various metrics were 

minimal, below 0.5% for separate units and near or below 1% 
for clusters.3 The only exception was with separate units and 
combined reserves where normalized commitment error rose 
to 2.3%.  The heterogeneity in generator characteristics results 
in relatively large (~1.25%) errors in CO2 emissions with full 
clustering. The CO2 errors are notably reduced with less 
aggregated clustering (next section) and longer model periods  
(not shown).  In capacity expansion applications, future 
hypothetical units would be more homogenous by technology, 
and these errors would likely be smaller. 
 

 
Fig. 2: Comparison of key error metrics for different Unit Commitment 

simplification approaches for the ERCOT 2007 test system. The full problem 
with separate units was used as a baseline.  

B.  Cluster Comparison 
Fig. 3 shows how most sub-clustering schemes result in 

small errors (around or below 1%) with the exception of 
clustering by age, which has larger errors (2.3-4.5%) for all 
metrics except CO2 emissions. The large errors in clustering 
by age result from large differences in coal output and the 
erroneous use of natural gas steam during peaking periods. 
Clustering by efficiency resulted in the lowest errors among 
the 17-cluster runs, for all other metrics, often close to or 
slightly better than the larger clustering by plant formulation 
(90 clusters). 

                                                             
3 Unlike operational unit commitment where a 1% cost savings represents 

a major difference, here a few percent error is in line with other expected 
errors. 

Clustering Error Comparison (ERCOT 1week) 

 
Fig. 3: Error comparison for different clustering approaches for ERCOT 

2007. In all cases, the full problem with separate units was used as a baseline. 
All runs used a MIP gap of 0.1% and no cheat. 

C.  Detailed Performance Comparison 
To provide more detail about the performance of 

clustering, we explore the distribution of normalized power 
errors using cumulative distribution functions (CDFs) for the 
sample week. We first look at CDFs across clustering method 
and then disaggregate the “clustering by efficiency” case by 
technology and time of day. Time series plots of operations 
over a sample week for individual units versus clustering by 
efficiency are visually indistinguishable, and therefore not 
included. 

In Fig. 4, we present CDFs of the errors from each 
clustering strategy, aggregated over all generation 
technologies and all hours of the day. Similar to the average 
errors above, the full distributions of errors shows that the 
worst performance comes from clustering by age, whereas the 
other clustering strategies have no errors for most of the units 
during most hours.  The quantile ranges with errors less than 
1% in absolute value are (0.04, 0.95) for full clustering, (0.03, 
0.95) for clustering by size, (0.02, 0.98) for clustering by 
efficiency, and (0.01, 0.99) for clustering by plant. 

 

 
Fig. 4: Cumulative distributions of errors in power for each clustering 

type.  Errors are calculated as the difference in power output of each 
generating unit in each hour from the binary formulation minus the power 
output from the same unit in the same hour from the clustering formulation, 
then normalized by the total hourly power from the binary formulation. All 
technologies and all hours are aggregated into a single CDF. 

separate full*cluster
Full*Problem 4517.2 2.2

No*Integer*<5MW 3693.8 1.9
No*Integer*<20MW 951.7 0.5
Combine*Reserves 376.6 0.3

Limit*startups 508.0 1.5
up/down*+*limit 1681.9 1.5

Run*Time*(sec)
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Fig. 5: Cumulative distributions of errors in power for clustering by 

efficiency, broken out for each generation technology.  Errors are calculated 
as the difference in power output of each generating unit in each hour from the 
binary formulation minus the power output from the same unit in the same 
hour from the clustering formulation, then normalized by the total power from 
the binary formulation. Errors across all hours are aggregated into each CDF. 

We further explore the error distributions by technologies 
and hour using the clustering by efficiency case.  Fig. 5 shows 
the CDFs of errors from each technology aggregated over all 
hours. The largest biases are an overestimate of power output 
by 1-3% from coal lignite steam units in roughly 20% of the 
hours, and an underestimate of power from natural gas 
combined cycle units by 1-3% also for about 20% of the 
hours.  The other technologies have errors that are always less 
than ±1%.  Disaggregating instead by time of day (Fig. 6) 
shows that the largest errors occur in the overnight hours 
(hours 1-6).  All other times of day have errors that are always 
less than ±1%.   

 

 
Fig. 6: Cumulative distributions of errors in power for clustering by 

efficiency, broken out for different times of day.  Errors are calculated as the 
difference in power output of each generating unit in each hour from the 
binary formulation minus the power output from the same unit in the same 
hour from the clustering formulation, then normalized by the power from the 
binary formulation. Errors across all technologies for a range of hours are 
aggregated into each CDF.  

For space considerations, we do not show the CDFs of 
errors in commitment states, but the results are qualitatively 
similar.  With clustering by type and efficiency only natural 
gas combined cycle and natural gas combustion turbines had 
non-zero commitment errors. The general bias from clustering 
is to commit slightly too many NGCC units in the overnight 
hours, and slightly too few in the late afternoon and evening. 
 

D.  Impact of Wind Penetration 
Future power systems will likely have significantly 

increased penetrations of variable renewables, such as wind, 
making it critical to verify that clustering continues to provide 
accurate results with more renewables. Fig. 7 compares our 
five aggregate error metrics for 0-40GW of wind, a range 
nearly eleven times larger than the baseline ERCOT 2007 
capacity of 3.7GW wind. In all cases, the existing thermal 
capacity is unchanged. Wind shedding is allowed without 
penalty. The errors compare clustering by type and efficiency 
to a baseline with individual units.  

Impact of Wind Penetration (ERCOT 1week) 

 
Fig. 7: Error comparison for clustering by efficiency for different installed 

wind capacity. In all cases, the corresponding simulation using separate units 
was used as a baseline. All runs used a MIP gap of 0.1% and no cheat. 

 
As before, all of these errors remain well contained mostly 

near or below 0.5%, although climbing to near 1% for CO2, 
commitment, and power in the 30GW wind case. These 
somewhat higher errors result from clustering by efficiency 
using somewhat more coal lignite with a corresponding 
reduction in subbituminous coal. In this case, small absolute 
CO2 errors are further magnified by a nearly 60% reduction in 
total CO2 emissions.  

The results for 0-40GW are also noteworthy for the lack of 
an increasing error trend with larger quantities of wind. 
Instead the errors across all metrics vary up and down with 
increasing wind, suggesting that thermal unit discretization, 
natural variances within the MIP gap, or other factors are more 
important than the quantity of variable renewables. 

At all wind capacities, clustering by type and efficiency 
continues to provide dramatic speedups ranging from 92 to 
over 800x faster than the separate unit baseline. 

E.  Cluster Scaling. 
 Fig. 8 shows how the total solver time is greatly reduced 

by clustering, enabling tractable computation of a full year, 
8760 hour, optimal unit commitment for both 17 clusters (less 
than 3 hours) and 7 clusters (130 seconds). The primary driver 
for these speed-ups is a drastic reduction in the numbers of 
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variables and equations which both scale roughly 
proportionally to the number of clusters. 

 
Fig. 8: Impact of clustering and model time horizon on solution time. Note 

both axes are logarithmic. All runs conducted with a 0.1% MIP gap and no 
cheat. Due to data limitations, constant heat rates are assumed. No other 
simplifications were used. 

VIII.  CONCLUSIONS  
In this paper, we demonstrated the tradeoff between 

accuracy and runtime resulting from different levels of 
aggregation for heterogeneous clusters and other heuristic 
simplifications in unit commitment. In comparison to 
traditional binary formulations, clustering provides orders of 
magnitude faster computation – from 10 to over 1000 times 
faster depending on the configuration – by grouping similar 
units into clusters and assigning an integer, rather than binary, 
commitment decision to the group. This assumption builds on 
the existing concept of aggregating identical units. Clustering 
allows capturing full unit commitment constraints – including 
ramping, startup costs, minimum output levels, and minimum 
up and down times – at an individual unit level under the key 
assumption that all units with in a cluster have averaged 
technical characteristics. Despite this assumption, we show 
that errors are small for a wide range of metrics. Furthermore, 
a detailed look at the results shows that these errors are largely 
concentrated in (near) marginal units and certain hours. This 
suggests that the accuracy/performance trade-off could be 
further improved by sub-clustering the marginal technologies 
(e.g., NGCC and NGCT) more than other technologies and/or 
perhaps further sub-clustering these marginal units by size, 
operating costs, and/or startup costs. 

A numeric example using an ERCOT-based 205-unit 
system shows that careful aggregation (17 clusters) introduces 
errors of 0.05-0.2% for total cost, CO2 emissions, energy mix, 
and dispatch schedule while providing several orders of 
magnitude faster solution times (400x) compared to traditional 
binary formulations. The unit commitment metric exhibits 
errors of around 0.9%. More aggressive aggregation (seven 
clusters) increases errors somewhat (roughly double) but 
achieves further speedup (2000x). We also demonstrate a full 
year (8760 hour) unit commitment for a 205-unit system in 
less than three minutes with personal computer hardware.  

We also compared other unit commitment simplifications – 
notably combining reserves and relaxing integer constraints 
for units with small minimum output levels – that can provide 
an additional order of magnitude speed-up for some problems. 

The clustering approach demonstrated here provides the 
ability to capture unit-level commitment decisions with 
intertemporal (hourly) constraints within a single optimization 
problem, which can be embedded within longer term 
operational and strategic analyses such as hydro-thermal 
coordination or capacity expansion under emissions or other 
policy constraints, especially when the long-term problem is 
stochastic.  The application of clustering to capacity expansion 
and other long-term strategic decisions are left for future 
research.  
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